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ABSTRACT 

 

In this paper we practically deal with the problem of factorizing large integers. The various algorithms that have 

been proposed are not efficient that is they do not run in polynomial time. We use the algebraic approach proposed 

by Wanambisi et al [1]. We define a large integer based on the number of digits and seek to decompose these 

numbers based on place values. 
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INTRODUCTION 

 

This section discusses the concept of a large composite, the basic concepts, the trends in differences in primes and the 

basics of the algebraic approach. 

 

Large composite integers 

The question of what is and what is not a large integer cannot be addressed at once. We pose the question how large is a 

large integer. Considering the RSA-2048 which is a 232- digit is a large enough integer to be referred to as a large integer? 

The answer is no! What about if we added to it just one more decimal digit then clearly we get a larger number and adding 

a digit still gives us still larger integers. The first number with more than a thousand digits known to be prime was M4253. 

The largest number on that list was found on 2003-Nov-17. This number has 6, 320, 430 digits. 

 

Now large composite integers are hard to factor or simply there is no known algorithm that can factor them  in polynomial 

time. This is of course the basis of most cryptosystem. So this problem acts as a padlock that locks up most of the world’s 

money and secrets. Since no one break down the integer problem in the background then the information in the background 

cannot be accessed. 

Is there therefore no answer to the questions: what is the largest integer known? Or is  there  a limit  to the size of a large 

integer which can be used in cryptographic primitives? 

 

Definition 1: In this paper a composite integer is a number N = pq where p and q are large primes. 

Definition 2: A large prime p is any number divisible only by one and itself with number of decimal digits 

(l) Greater than or equal to 5. 

 

Definition 3: A large composite integer is a composite integer N = pq where both p, q are of decimal digit length l ≥ 5. 

 

Definition 4: Large composite integer factorization is the process of factorizing a large composite integer. 

 

The Basic concepts 

 

Theorem (Fundamental Theorem of Arithmetic) 

 

Every number greater than 1 factors into a product of primes n = p1p2 … ps. Further, writing the primes in ascending order 

p1  ≤ p2  ≤ ⋯  ≤ ps  makes the factorization  unique. 

We will break the proof of the Fundamental Theorem into a sequence of Lemmas [5] 

Lemma (Euclid’s Lemma) 

If p is a prime and p|ab, then p|aor p|b. 

Proof 

Assume that p|ab. If p|a then we are done, so suppose that it does not. Let c = gcd (p, a). Note that c > 0, and that c|p and c|a. 

Since c|p we have that c = 1 or c = p. If c = p then p|a, which we assumed was not true. So we must have c = 1. Hence gcd 

(p, a) = 1 and p|ab. Thus p|b [5]. 



International Journal of Supportive Research (IJSR), ISSN: 3079-4692 

Volume 3, Issue 2, July-December, 2025, Available online at: www.ijsupport.com 

32 

Lemma 

Let  p  be  prime.  Let a1 , a2 , … , an , n ≥ 1,  be  integers.  If p|a1 a2  … an,  then   p|ai    for  at  least  one  i ∈  

{1,2, . . n}. 

 

Proof 

We use induction on n. For the n = 1 base case the result is clear. For the inductive step,  assume the  inductive hypothesis: 

that the lemma holds for n such that 1 ≤ k ≤ n. We must show that it holds for 

n = k + 1. Assume that p is prime and that p|a1a2 … ak ak+ 1 . Write a1a2 … ak as a, and ak+ 1 as b. Then p|a or p|b. If  p|a = 

a1  … ak   then by the induction hypothesis,  p|ai   for some i ∈ {1,2, . . k}. If p | b then p|ak + 1 . So we can say that   p|ai   for 

some i ∈ {1,2, . . k + 1}. This verifies the lemma for n = k + 1. Hence by mathematical induction, it holds for all n ≥ 1[5]. 

 

Lemma (Fundamental Theorem, Existence) 

If n > 1 then there exist primes p1, … , ps, where s ≥ 1, such that n = p1p2  … ps  and p1  ≤ p2  ≤ ⋯  ≤ ps. 

 

Proof 

We will use induction on n. The base step is  n  = 2: in this case, since 2 is prime  we  can take s  = 1  and  p1 = 2. For the 

inductive step, assume the hypothesis that the lemma holds for 2 ≤ k ≤ n; we  will show  that it holds for n = k + 1. If k + 

1is prime then s = 1 and p1  = k  + 1. If k + 1 is  composite then write 

k + 1 = ab where 1 < a < k + 1 and 1 < b < k + 1. By the  induction  hypothesis  there are  primes 

p1, … , pu  and q1, … , qv  such that a = p1  … puand b = q1 … qv.  This  gives that k + 1 is a product of primes 

k + 1 = ab = p1p2 … puq1q2 … qv, where s = u + v. Reorder the primes into ascending order, if necessary. The base step 

and the inductive step together give us that the statement is true for all n > 1 [5]. 

 

Lemma (Fundamental Theorem, Uniqueness) 

If n = p1p2  … ps  for s ≥ 1 with p1  ≤ p2  ≤ ⋯ ≤ ps, and also n = q1q2  … qt  for t ≥ 1 with q1  ≤ q2  ≤ ⋯ ≤ 

qt, then t = s, and pi = qi for all i ∈  [1, s] [5]. 

This result can as well be proved by mathematical induction [5]. 

 

The algebraic approach Twin primes 

Twin primes have a difference of 2. Thus if p and q are any two consecutive twin primes then the product 

pqcan be given by (n − 1)(n + 1). Now consider a composite integer N = pq that is a product of twin primes. Then 

 

(n − 1)(n + 1) = N 

n
2
 + 1 = N 

n = ±√N + 1 

 

Taking the appropriate value of n to be approximately p then q follows at once [1]. 

 

Blum integers 

A Blum integer is a composite integer that is a product of two primes both congruent to 1 modulo 4. The difference 

between any two such consecutive primes is 4. Thus if p and q are two primes  both congruent to  1 modulo 4, then 

 

|p − q| = 4 

 

Therefore if we let p to be say n-2 and q to be say n+2, then a Blum integer N = pq 

 

(n − 2)(n + 2) = N 

n
2
 − 4 = N 

n
2
 = N+ 4 

n = ±√N + 4 

 

An appropriate value of n gives us approximate p and q hence the prime factors of  our  composite integer  [1]. 

 

Other composite integers 

In this section we consider other composite integers which are products of primes with differences of 6, 8, 10, 12, 14, 

16 e.t.c. now just like the case of Twin and Blum integers, if N = pq is any composite integer, with difference of say 

6, then clearly 
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) 

|p − q| = 6 

 

Thus if we let p = n − 3 and q = n + 3 then a composite integer N = pq 

 

Therefore n = ±√N + 9 (n − 3)(n + 3) = N 

n
2
 − 9 = N 

n
2
 = N + 9 

 

An appropriate value of n gives approximate values of the prime factors of the composite integer [1]. 

 

For any general composite integer N = pq, with the difference |p − q| the prime factors are approximately 

n = ±JN + (|p–q | 2 

2 

 

Using the relation (3), we can obtain prime factors of composite integers on condition that the integer is a product of two 

primes no matter how large. This method reduces the steps that lead to  factorization  of a large integer to say polynomial 

time. If for example we take the case of  RSA cryptosystem which is based  on the prime factorization problem in which the 

primes are relatively close, the steps taken to arrive at the prime factors are greatly reduced. This then can be done in 

polynomial time [1]. 

 

Cryptographic security 

The Rivest, Shamir, Adleman (RSA) cryptosystem is an example of a public key cryptosystem. RSA uses a public key 

to encrypt messages and decryption is performed using a corresponding private key. We can distribute our public 

keys, but for security reasons we should keep our private keys to ourselves. Just like the RSA, most of the existing 

cryptographic primitives draw their security from the hardness of composite integer factorization. Say for large 

integer N = pq, the choice of numeric values for p and q for the remainder of this paper, always bearing in mind that 

they have been chosen for illustrative purposes only. Refer [2], [3] and [4] for in-depth discussions on the security of 

RSA, or consult other specialized texts. 

 

For RSA, we can compute the value (N) for arbitrarily large prime numbers p and q, this can take an enormous 

amount of time. Indeed, the private key can be quickly deduced from the public key once you know (N), so it is an 

important part of the security of the RSA cryptosystem that (N) cannot be computed in a short time, if only N is 

known. On the other hand, if the private key or the factorization of n is available, we can compute    (N) = (p − 1)(q − 1) 

in a very short time [6]. 

 

Factoring large composite integers 

This section contains results of this research. We shall use the terms factorization and decomposition interchangeably 

because we are dealing with numbers that products of only two primes. 

 

Proposition 1 

Let  N = pq be a large  composite integer  of decimal digit length  lJ≥ 5 and  difference  |p − q| denoted as 

d ≥ 0, then the prime factors p and q are approximately p = q = ± N + 

2 

(2) 

 

Consider the integer n = 21, though not necessarily large as suggested in this paper but for purposes of illustrating the above 

proposition we have the prime factors as: 

 

J 
4 2 

p = ± 21 + (
2
) 

 

p = ±√25 = ±5 
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2 

2 

Now taking the positive square root and adding or subtracting d we obtain 2 

 

p = 3 and q = 7. 

 

Large integers that are used in cryptographic primitives Mersenne primes 

A prime number of the form Mn = 2
n
 − 1, n ≥ 2, is a Mersenne prime. Consider the RSA public key with N = p. q 

where p and q are both Mersenne primes. With N = 68718821377. We want to find the prime factors of m, 

applying the proposition 1 we have 

 

J 
393216 2 

 
p = ± 68718821377 + ( 

2 
) 

 

Evaluating this and adding and subtracting the value (393216 ) yields values approximately 

 

p = 524287 and q = 131071 

 

With the factorization determining    (N) = (p − 1)(q − 1) is easy. 

 

Blum integers 

 

Unlike Mersenne primes, Blum integers have predictable differences between consecutive primes, to be precise 4. 

Any other difference will be a multiple of 4. Applying proposition 1 on N = pq such as N = 62393801 

 

Here we check for the difference 4 and if it doesn’t give us the solution, we return and  pick the  next  multiple of 4; we do 

this until we obtain the difference that gives a solution. That is in this case 40. Substituting we obtain: 

 

J 
40 2 

p = ± 62393801 + ( 
2 

) 

Evaluating this equation we get the values of p and q as 7879 and 7919. 

 

Twin primes 

 

Just like the Blum integers, differences between consecutive Twin primes are predictable and factoring is similar to that of 

Blum integers replacing the difference 4 with 2. 

 

CONCLUSION 

 

Assuming that m is the product of two odd primes p and q between 1 and N, the Algebraic approach which utilizes the 

prime differences as presented in section 3.3 makes no more than Nsteps since there are N   differences. Hence takes 0 

(N)steps. The algorithm can take even fewer steps the ones given above since the differences repeat themselves. A study I 

have carried out on the prime differences reveals that in the first 1000 primes, the maximum difference is 14; now taking 

the even numbers between 1 and 14 we have only 7! This shows that if we are dealing with the products of consecutive 

primes then it will take a record maximum 7 steps to achieve the prime factors! 

 

The complication comes in when the primes are  not  consecutive.  This means that each of the differences has to have its 

multiples worked out and each of them tested to establish the difference between each prime. Since the multiples are even 

then all even numbers can be checked between 1  and  N.  This brings the number of steps to a maximum of N.    

2 
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