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ABSTRACT

In this paper we practically deal with the problem of factorizing large integers. The various algorithms that have
been proposed are not efficient that is they do not run in polynomial time. We use the algebraic approach proposed
by Wanambisi et al [1]. We define a large integer based on the number of digits and seek to decompose these
numbers based on place values.
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INTRODUCTION

This section discusses the concept of a large composite, the basic concepts, the trends in differences in primes and the
basics of the algebraic approach.

Large composite integers

The question of what is and what is not a large integer cannot be addressed at once. We pose the question how large is a
large integer. Considering the RSA-2048 which is a 232- digit is a large enough integer to be referred to as a large integer?
The answer is no! What about if we added to it just one more decimal digit then clearly we get a larger number and adding
a digit still gives us still larger integers. The first number with more than a thousand digits known to be prime was M4253.
The largest number on that list was found on 2003-Nov-17. This number has 6, 320, 430 digits.

Now large composite integers are hard to factor or simply there is no known algorithm that can factor them in polynomial
time. This is of course the basis of most cryptosystem. So this problem acts as a padlock that locks up most of the world’s
money and secrets. Since no one break down the integer problem in the background then the information in the background
cannot be accessed.

Is there therefore no answer to the questions: what is the largest integer known? Or is there a limit to the size of a large
integer which can be used in cryptographic primitives?

Definition 1: In this paper a composite integer is a number Nl= pqwhere p and q are large primes.
Definition 2: A large prime p is any number divisible only by one and itself with number of decimal digits
(I) Greater than or equal to 5.

Definition 3: Alarge composite integer isacomposite integer N=pgwhere both p, q are of decimal digit length 1 > 5.
Definition 4: Large composite integer factorization is the process of factorizing a large composite integer.

The Basic concepts

Theorem (Fundamental Theorem of Arithmetic)

Every number greater than 1 factors into a product of primes n = p1p2 ... ps. Further, writing the primes in ascending order
p1 <p2 <- <ps makes the factorization unique.

We will break the proof of the Fundamental Theorem into a sequence of Lemmas [5]

Lemma (Euclid’s Lemma)

If p is a prime and plab, then plaor plb.

Proof

Assume that plab. If pa then we are done, so suppose that it does not. Let ¢ = gcd (p, a). Note that ¢ > 0, and that c|p and cla.
Since clp we have that ¢ = 1 or ¢ = p. If ¢ = p then pla, which we assumed was not true. So we must have ¢ = 1. Hence gcd
(p, a) = 1 and plab. Thus plb[5].
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Lemma
Let p be prime. Letal,a2,...,an,n>1, be integers. Ifpala2 ...an, then pai for at least one ie

{1.2,..n}.

Proof

We use induction on n. For the n = 1 base case the result is clear. For the inductive step, assume the inductive hypothesis:
that the lemma holds for n such that 1 <k <n. We must show that it holds for

n=k+ 1. Assume that p is prime and that plaja2 ... ak ak+ 1 . Write a1a2 ... ak as a, and ak+ 1 as b. Then plaor pb. If pla=
al ...ak then by the induction hypothesis, pai for some i€ {1,2,..k}. If p | b then plak + 1 . So we can say that plaj for
somei € {12, .. k+ 1}. This verifies the lemma for n = k+ 1. Hence by mathematical induction, it holds for all n > 1[5].

Lemma (Fundamental Theorem, Existence)
If n > 1 then there exist primes p1, ..., ps, where s> 1, such that n=p1p2 ... ps and p1 <p2 < <ps.

Proof

We will use induction on n. The base step is n = 2: in this case, since 2 is prime we cantakes =1 and p1 = 2. For the
inductive step, assume the hypothesis that the lemma holds for 2 <k <n; we will show that it holds forn=k + 1. Ifk +
lisprimethens=1and p1 =k +1.Ifk+1is composite then write

k+ 1 =abwhere 1 <a<k+1and 1< b<k+ 1. By the induction hypothesis there are primes

p1,...,pu andql, ...,qv suchthata=p1 ... puand b=q1 ... qu. This gives that k + 1 is a product of primes
k+1=ab=pip2 ... puglq2 ... qv, where s = u + v. Reorder the primes into ascending order, if necessary. The base step
and the inductive step together give us that the statement is true for all n > 1 [5].

Lemma (Fundamental Theorem, Unigueness)

Ifn=p1p2 ...ps fors>1withpl <p2 <--<ps,andalson=q1qg2 ...qt fort>1withql <g2 <---<
qt, then t =s, and pi = gi for all i € [1, s] [5].

This result can as well be proved by mathematical induction [5].

The algebraic approach Twin primes
Twin primes have a difference of 2. Thus if p and g are any two consecutive twin primes then the product
pgcan be given by (n—1)(n+1). Now consider a composite integer N= pgthat is a product of twin primes. Then

(n—1)(n+1)= N
n?+1=N
n= +VN+ 1

Taking the appropriate value of n to be approximately p then g follows at once [1].
Blum integers

A Blum integer is a composite integer that is a product of two primes both congruent to 1 modulo 4. The difference
between any two such consecutive primes is 4. Thus if p and q are two primes both congruent to 1 modulo 4, then

Ip—ql=4
Therefore if we let p to be say n-2 and q to be say n+2, then a Blum integer N= pqg

(n—2)(n+ 2)= N

nf—4=N
n®=N+4
n= +VN+ 4

An appropriate value of n gives us approximate p and q hence the prime factors of our composite integer [1].

Other composite integers

In this section we consider other composite integers which are products of primes with differences of 6, 8, 10, 12, 14,
16 e.t.c. now just like the case of Twin and Blum integers, if N=pqis any composite integer, with difference of say
6, thenclearly
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lp—ql=6
Thus if we let p= n— 3 and q= n+ 3 then a composite integer N= pq

Therefore n= +VN+ 9 (n— 3)(n+ 3)= N
nf—9=N
n®=N+9

An appropriate value of n gives approximate values of the prime factors of the composite integer [1].

For any general composite integer Ni= pq, with the difference [p— g|the prime factors are approximately

n=+JN+ (Ip—q 2 )
2

Using the relation (3), we can obtain prime factors of composite integers on condition that the integer is a product of two
primes no matter how large. This method reduces the steps that lead to factorization of a large integer to say polynomial
time. If for example we take the case of RSA cryptosystem which is based on the prime factorization problem in which the
primes are relatively close, the steps taken to arrive at the prime factors are greatly reduced. This then can be done in
polynomial time [1].

Cryptographic security

The Rivest, Shamir, Adleman (RSA) cryptosystem is an example of a public key cryptosystem. RSA uses apublic key
to encrypt messages and decryption is performed using a corresponding private key. We can distribute our public
keys, but for security reasons we should keep our private keys to ourselves. Just like the RSA, most of the existing
cryptographic primitives draw their security from the hardness of composite integer factorization. Say for large
integer Nl=pq, the choice of numeric values for pand gfor the remainder of this paper, always bearing in mind that
they have been chosen for illustrative purposes only. Refer [2], [3] and [4] for in-depth discussions on the security of
RSA, or consultother specialized texts.

For RSA, we can compute the value (N) for arbitrarily large prime numbers p and g, this can take an enormous
amount of time. Indeed, the private key can be quickly deduced from the public key once you know (N), so it is an
important part of the security of the RSA cryptosystem that (N) cannot be computed in a short time, if only Nis
known. On the other hand, if the private key or the factorization of n is available, we can compute (N)= (p— 1)(q— 1)
in a very short time [6].

Factoring large composite integers
This section contains results of this research. We shall use the terms factorization and decomposition interchangeably
because we are dealing with numbers that products of only two primes.

Proposition 1

Let N = pgbe a large composite integer of decimal digit length I3 5 and difference jp— gldenoted as

d> 0, then the prime factors pand qare approximately p=qg=+ N+
2

()

Consider the integer n= 21, though not necessarily large as suggested in this paper but for purposes of illustrating the above
proposition we have the prime factors as:

2
J 4
P=%21+ (;)
p=+V25 =45
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Now taking the positive square root and adding or subtracting d we obtain 2
p=3andqg=7.

Large integers that are used in cryptographic primitives Mersenne primes

A prime number of the form Mn = 2" —1,n> 2, is a Mersenne prime. Consider the RSA public key with N=p. g
where p and q are both Mersenne primes. With N = 68718821377. We want to find the prime factors of m,
applying the proposition 1 we have

3932162

—

p= + 68718821377 +( )

Evaluating this and adding and subtracting the value (393216 ) yields values approximately

p= 524287 and gq= 131071
With the factorization determining (N)= (p— 1)(q— 1) is easy.
Blum integers

Unlike Mersenne primes, Blum integers have predictable differences between consecutive primes, to be precise 4.
Any other difference will be a multiple of 4. Applying proposition 1 on N= pgsuch as N= 62393801

Here we check for the difference 4 and if it doesn’t give us the solution, we return and pick the next multiple of 4; we do
this until we obtain the difference that gives a solution. That is in this case 40. Substituting we obtain:

3 40 2
p= + 62393801 + (, )

Evaluating this equation we get the values of p and g as 7879 and 7919.
Twin primes

Just like the Blum integers, differences between consecutive Twin primes are predictable and factoring is similar to that of
Blum integers replacing the difference 4 with 2.

CONCLUSION

Assuming that m is the product of two odd primes p and q between 1 and N, the Algebraic approach which utilizes the
prime differences as presented in sectlon 3.3 makes no more than Nsteps since there are N_differences. Hence takes 0
(Nysteps. The algorithm can take even fewer steps the ones given above since the differences repeat themselves. A study |
have carried out on the prime differences reveals that in the first 1000 primes, the maximum difference is 14; now taking
the even numbers between 1 and 14 we have only 7! This shows that if we are dealing with the products of consecutive
primes then it will take a record maximum 7 steps to achieve the prime factors!

The complication comes in when the primes are not consecutive. This means that each of the differences has to have its
multiples worked out and each of them tested to establish the difference between each prime. Since the multiples are even
then all even numbers can be checked between 1 and N. This brings the number of steps to a maximum of N,__
2
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